高级篇
分布式缓存
-- 基于Redis集群解决单机Redis存在的问题
单机的Redis存在四大问题:
1.Redis持久化
Redis有两种持久化方案:
- RDB持久化
- AOF持久化
1.1.RDB持久化
RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。快照文件称为RDB文件,默认是保存在当前运行目录。
1.1.1.执行时机
RDB持久化在四种情况下会执行:
- 执行save命令
- 执行bgsave命令
- Redis停机时
- 触发RDB条件时
1)save命令
执行下面的命令,可以立即执行一次RDB:
save命令会导致主进程执行RDB,这个过程中其它所有命令都会被阻塞。只有在数据迁移时可能用到。
2)bgsave命令
下面的命令可以异步执行RDB:
这个命令执行后会开启独立进程完成RDB,主进程可以持续处理用户请求,不受影响。
3)停机时
Redis停机时会执行一次save命令,实现RDB持久化。
4)触发RDB条件
Redis内部有触发RDB的机制,可以在redis.conf文件中找到,格式如下:
# 900秒内,如果至少有1个key被修改,则执行bgsave , 如果是save "" 则表示禁用RDB
save 900 1
save 300 10
save 60 10000
RDB的其它配置也可以在redis.conf文件中设置:
# 是否压缩 ,建议不开启,压缩也会消耗cpu,磁盘的话不值钱
rdbcompression yes
# RDB文件名称
dbfilename dump.rdb
# 文件保存的路径目录
dir ./
1.1.2.RDB原理
bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。
fork采用的是copy-on-write技术:
- 当主进程执行读操作时,访问共享内存;
- 当主进程执行写操作时,则会拷贝一份数据,执行写操作。
1.1.3.小结
RDB方式bgsave的基本流程?
- fork主进程得到一个子进程,共享内存空间
- 子进程读取内存数据并写入新的RDB文件
- 用新RDB文件替换旧的RDB文件
RDB会在什么时候执行?save 60 1000代表什么含义?
- 默认是服务停止时
- 代表60秒内至少执行1000次修改则触发RDB
RDB的缺点?
- RDB执行间隔时间长,两次RDB之间写入数据有丢失的风险
- fork子进程、压缩、写出RDB文件都比较耗时
1.2.AOF持久化
1.2.1.AOF原理
AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。
1.2.2.AOF配置
AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:
# 是否开启AOF功能,默认是no
appendonly yes
# AOF文件的名称
appendfilename "appendonly.aof"
AOF的命令记录的频率也可以通过redis.conf文件来配:
# 表示每执行一次写命令,立即记录到AOF文件
appendfsync always
# 写命令执行完先放入AOF缓冲区,然后表示每隔1秒将缓冲区数据写到AOF文件,是默认方案
appendfsync everysec
# 写命令执行完先放入AOF缓冲区,由操作系统决定何时将缓冲区内容写回磁盘
appendfsync no
三种策略对比:
1.2.3.AOF文件重写
因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。
如图,AOF原本有三个命令,但是set num 123 和 set num 666
都是对num的操作,第二次会覆盖第一次的值,因此第一个命令记录下来没有意义。
所以重写命令后,AOF文件内容就是:mset name jack num 666
Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:
# AOF文件比上次文件 增长超过多少百分比则触发重写
auto-aof-rewrite-percentage 100
# AOF文件体积最小多大以上才触发重写
auto-aof-rewrite-min-size 64mb
1.3.RDB与AOF对比
RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。
2.Redis主从
2.1.搭建主从架构
单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。
具体搭建流程参考课前资料《Redis集群.md》:
2.2.主从数据同步原理
2.2.1.全量同步
主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给slave节点,流程:
这里有一个问题,master如何得知salve是第一次来连接呢??
有几个概念,可以作为判断依据:
- Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid
- offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。
因此slave做数据同步,必须向master声明自己的replication id 和offset,master才可以判断到底需要同步哪些数据。
因为slave原本也是一个master,有自己的replid和offset,当第一次变成slave,与master建立连接时,发送的replid和offset是自己的replid和offset。
master判断发现slave发送来的replid与自己的不一致,说明这是一个全新的slave,就知道要做全量同步了。
master会将自己的replid和offset都发送给这个slave,slave保存这些信息。以后slave的replid就与master一致了。
因此,master判断一个节点是否是第一次同步的依据,就是看replid是否一致。
如图:
完整流程描述:
- slave节点请求增量同步
- master节点判断replid,发现不一致,拒绝增量同步
- master将完整内存数据生成RDB,发送RDB到slave
- slave清空本地数据,加载master的RDB
- master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave
- slave执行接收到的命令,保持与master之间的同步
2.2.2.增量同步
全量同步需要先做RDB,然后将RDB文件通过网络传输个slave,成本太高了。因此除了第一次做全量同步,其它大多数时候slave与master都是做增量同步。
什么是增量同步?就是只更新slave与master存在差异的部分数据。如图:
那么master怎么知道slave与自己的数据差异在哪里呢?
2.2.3.repl_backlog原理
master怎么知道slave与自己的数据差异在哪里呢?
这就要说到全量同步时的repl_baklog文件了。
这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖。
repl_baklog中会记录Redis处理过的命令日志及offset,包括master当前的offset,和slave已经拷贝到的offset:
slave与master的offset之间的差异,就是salve需要增量拷贝的数据了。
随着不断有数据写入,master的offset逐渐变大,slave也不断的拷贝,追赶master的offset:
直到数组被填满:
此时,如果有新的数据写入,就会覆盖数组中的旧数据。不过,旧的数据只要是绿色的,说明是已经被同步到slave的数据,即便被覆盖了也没什么影响。因为未同步的仅仅是红色部分。
但是,如果slave出现网络阻塞,导致master的offset远远超过了slave的offset:
如果master继续写入新数据,其offset就会覆盖旧的数据,直到将slave现在的offset也覆盖:
棕色框中的红色部分,就是尚未同步,但是却已经被覆盖的数据。此时如果slave恢复,需要同步,却发现自己的offset都没有了,无法完成增量同步了。只能做全量同步。
2.3.主从同步优化
主从同步可以保证主从数据的一致性,非常重要。
可以从以下几个方面来优化Redis主从就集群:
- 在master中配置repl-diskless-sync yes启用无磁盘复制,避免全量同步时的磁盘IO。
- Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO
- 适当提高repl_baklog的大小,发现slave宕机时尽快实现故障恢复,尽可能避免全量同步
- 限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力
主从从架构图:
2.4.小结
简述全量同步和增量同步区别?
- 全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。
- 增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave
什么时候执行全量同步?
- slave节点第一次连接master节点时
- slave节点断开时间太久,repl_baklog中的offset已经被覆盖时
什么时候执行增量同步?
- slave节点断开又恢复,并且在repl_baklog中能找到offset时
3.Redis哨兵
Redis提供了哨兵(Sentinel)机制来实现主从集群的自动故障恢复。
3.1.哨兵原理
3.1.1.集群结构和作用
哨兵的结构如图:
哨兵的作用如下:
- 监控:Sentinel 会不断检查您的master和slave是否按预期工作
- 自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主
- 通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端
3.1.2.集群监控原理
Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:
•主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线。
•客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半。
3.1.3.集群故障恢复原理
一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:
- 首先会判断slave节点与master节点断开时间长短,如果超过指定值(down-after-milliseconds * 10)则会排除该slave节点
- 然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举
- 如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高
- 最后是判断slave节点的运行id大小,越小优先级越高。
当选出一个新的master后,该如何实现切换呢?
流程如下:
- sentinel给备选的slave1节点发送slaveof no one命令,让该节点成为master
- sentinel给所有其它slave发送slaveof 192.168.150.101 7002 命令,让这些slave成为新master的从节点,开始从新的master上同步数据。
- 最后,sentinel将故障节点标记为slave,当故障节点恢复后会自动成为新的master的slave节点
3.1.4.小结
Sentinel的三个作用是什么?
- 监控
- 故障转移
- 通知
Sentinel如何判断一个redis实例是否健康?
- 每隔1秒发送一次ping命令,如果超过一定时间没有相向则认为是主观下线
- 如果大多数sentinel都认为实例主观下线,则判定服务下线
故障转移步骤有哪些?
- 首先选定一个slave作为新的master,执行slaveof no one
- 然后让所有节点都执行slaveof 新master
- 修改故障节点配置,添加slaveof 新master
3.2.搭建哨兵集群
具体搭建流程参考课前资料《Redis集群.md》:
3.3.RedisTemplate
在Sentinel集群监管下的Redis主从集群,其节点会因为自动故障转移而发生变化,Redis的客户端必须感知这种变化,及时更新连接信息。Spring的RedisTemplate底层利用lettuce实现了节点的感知和自动切换。
下面,我们通过一个测试来实现RedisTemplate集成哨兵机制。
3.3.1.导入Demo工程
首先,我们引入课前资料提供的Demo工程:
3.3.2.引入依赖
在项目的pom文件中引入依赖:
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
3.3.3.配置Redis地址
然后在配置文件application.yml中指定redis的sentinel相关信息:
spring:
redis:
sentinel:
master: mymaster
nodes:
- 192.168.150.101:27001
- 192.168.150.101:27002
- 192.168.150.101:27003
3.3.4.配置读写分离
在项目的启动类中,添加一个新的bean:
@Bean
public LettuceClientConfigurationBuilderCustomizer clientConfigurationBuilderCustomizer(){
return clientConfigurationBuilder -> clientConfigurationBuilder.readFrom(ReadFrom.REPLICA_PREFERRED);
}
这个bean中配置的就是读写策略,包括四种:
- MASTER:从主节点读取
- MASTER_PREFERRED:优先从master节点读取,master不可用才读取replica
- REPLICA:从slave(replica)节点读取
- REPLICA _PREFERRED:优先从slave(replica)节点读取,所有的slave都不可用才读取master
4.Redis分片集群
4.1.搭建分片集群
主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:
海量数据存储问题
高并发写的问题
使用分片集群可以解决上述问题,如图:
分片集群特征:
集群中有多个master,每个master保存不同数据
每个master都可以有多个slave节点
master之间通过ping监测彼此健康状态
客户端请求可以访问集群任意节点,最终都会被转发到正确节点
具体搭建流程参考课前资料《Redis集群.md》:
4.2.散列插槽
4.2.1.插槽原理
Redis会把每一个master节点映射到0~16383共16384个插槽(hash slot)上,查看集群信息时就能看到:
数据key不是与节点绑定,而是与插槽绑定。redis会根据key的有效部分计算插槽值,分两种情况:
- key中包含
{}
,且{}
中至少包含1个字符,{}
中的部分是有效部分 - key中不包含
{}
,整个key都是有效部分
例如:key是num,那么就根据num计算,如果是{itcast}num,则根据itcast计算。计算方式是利用CRC16算法得到一个hash值,然后对16384取余,得到的结果就是slot值。
如图,在7001这个节点执行set a 1时,对a做hash运算,对16384取余,得到的结果是15495,因此要存储到103节点。
到了7003后,执行get num
时,对num做hash运算,对16384取余,得到的结果是2765,因此需要切换到7001节点
4.2.1.小结
Redis如何判断某个key应该在哪个实例?
- 将16384个插槽分配到不同的实例
- 根据key的有效部分计算哈希值,对16384取余
- 余数作为插槽,寻找插槽所在实例即可
如何将同一类数据固定的保存在同一个Redis实例?
- 这一类数据使用相同的有效部分,例如key都以
{typeId}
为前缀
4.3.集群伸缩
redis-cli --cluster提供了很多操作集群的命令,可以通过下面方式查看:
比如,添加节点的命令:
4.3.1.需求分析
需求:向集群中添加一个新的master节点,并向其中存储 num = 10
- 启动一个新的redis实例,端口为7004
- 添加7004到之前的集群,并作为一个master节点
- 给7004节点分配插槽,使得num这个key可以存储到7004实例
这里需要两个新的功能:
- 添加一个节点到集群中
- 将部分插槽分配到新插槽
4.3.2.创建新的redis实例
创建一个文件夹:
mkdir 7004
拷贝配置文件:
cp redis.conf /7004
修改配置文件:
sed /s/6379/7004/g 7004/redis.conf
启动
redis-server 7004/redis.conf
4.3.3.添加新节点到redis
添加节点的语法如下:
执行命令:
redis-cli --cluster add-node 192.168.150.101:7004 192.168.150.101:7001
通过命令查看集群状态:
redis-cli -p 7001 cluster nodes
如图,7004加入了集群,并且默认是一个master节点:
但是,可以看到7004节点的插槽数量为0,因此没有任何数据可以存储到7004上
4.3.4.转移插槽
我们要将num存储到7004节点,因此需要先看看num的插槽是多少:
如上图所示,num的插槽为2765.
我们可以将0~3000的插槽从7001转移到7004,命令格式如下:
具体命令如下:
建立连接:
得到下面的反馈:
询问要移动多少个插槽,我们计划是3000个:
新的问题来了:
那个node来接收这些插槽??
显然是7004,那么7004节点的id是多少呢?
复制这个id,然后拷贝到刚才的控制台后:
这里询问,你的插槽是从哪里移动过来的?
- all:代表全部,也就是三个节点各转移一部分
- 具体的id:目标节点的id
- done:没有了
这里我们要从7001获取,因此填写7001的id:
填完后,点击done,这样插槽转移就准备好了:
确认要转移吗?输入yes:
然后,通过命令查看结果:
可以看到:
目的达成。
4.4.故障转移
集群初识状态是这样的:
其中7001、7002、7003都是master,我们计划让7002宕机。
4.4.1.自动故障转移
当集群中有一个master宕机会发生什么呢?
直接停止一个redis实例,例如7002:
redis-cli -p 7002 shutdown
1)首先是该实例与其它实例失去连接
2)然后是疑似宕机:
3)最后是确定下线,自动提升一个slave为新的master:
4)当7002再次启动,就会变为一个slave节点了:
4.4.2.手动故障转移
利用cluster failover命令可以手动让集群中的某个master宕机,切换到执行cluster failover命令的这个slave节点,实现无感知的数据迁移。其流程如下:
这种failover命令可以指定三种模式:
- 缺省:默认的流程,如图1~6歩
- force:省略了对offset的一致性校验
- takeover:直接执行第5歩,忽略数据一致性、忽略master状态和其它master的意见
案例需求:在7002这个slave节点执行手动故障转移,重新夺回master地位
步骤如下:
1)利用redis-cli连接7002这个节点
2)执行cluster failover命令
如图:
效果:
4.5.RedisTemplate访问分片集群
RedisTemplate底层同样基于lettuce实现了分片集群的支持,而使用的步骤与哨兵模式基本一致:
1)引入redis的starter依赖
2)配置分片集群地址
3)配置读写分离
与哨兵模式相比,其中只有分片集群的配置方式略有差异,如下:
spring:
redis:
cluster:
nodes:
- 192.168.150.101:7001
- 192.168.150.101:7002
- 192.168.150.101:7003
- 192.168.150.101:8001
- 192.168.150.101:8002
- 192.168.150.101:8003
多级缓存
1.什么是多级缓存
传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库,如图:
存在下面的问题:
•请求要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈
•Redis缓存失效时,会对数据库产生冲击
多级缓存就是充分利用请求处理的每个环节,分别添加缓存,减轻Tomcat压力,提升服务性能:
- 浏览器访问静态资源时,优先读取浏览器本地缓存
- 访问非静态资源(ajax查询数据)时,访问服务端
- 请求到达Nginx后,优先读取Nginx本地缓存
- 如果Nginx本地缓存未命中,则去直接查询Redis(不经过Tomcat)
- 如果Redis查询未命中,则查询Tomcat
- 请求进入Tomcat后,优先查询JVM进程缓存
- 如果JVM进程缓存未命中,则查询数据库
在多级缓存架构中,Nginx内部需要编写本地缓存查询、Redis查询、Tomcat查询的业务逻辑,因此这样的nginx服务不再是一个反向代理服务器,而是一个编写业务的Web服务器了。
因此这样的业务Nginx服务也需要搭建集群来提高并发,再有专门的nginx服务来做反向代理,如图:
另外,我们的Tomcat服务将来也会部署为集群模式:
可见,多级缓存的关键有两个:
一个是在nginx中编写业务,实现nginx本地缓存、Redis、Tomcat的查询
另一个就是在Tomcat中实现JVM进程缓存
其中Nginx编程则会用到OpenResty框架结合Lua这样的语言。
这也是今天课程的难点和重点。
2.JVM进程缓存
为了演示多级缓存的案例,我们先准备一个商品查询的业务。
2.1.导入案例
参考课前资料的:《案例导入说明.md》
2.2.初识Caffeine
缓存在日常开发中启动至关重要的作用,由于是存储在内存中,数据的读取速度是非常快的,能大量减少对数据库的访问,减少数据库的压力。我们把缓存分为两类:
- 分布式缓存,例如Redis:
- 优点:存储容量更大、可靠性更好、可以在集群间共享
- 缺点:访问缓存有网络开销
- 场景:缓存数据量较大、可靠性要求较高、需要在集群间共享
- 进程本地缓存,例如HashMap、GuavaCache:
- 优点:读取本地内存,没有网络开销,速度更快
- 缺点:存储容量有限、可靠性较低、无法共享
- 场景:性能要求较高,缓存数据量较小
我们今天会利用Caffeine框架来实现JVM进程缓存。
Caffeine是一个基于Java8开发的,提供了近乎最佳命中率的高性能的本地缓存库。目前Spring内部的缓存使用的就是Caffeine。GitHub地址:https://github.com/ben-manes/caffeine
Caffeine的性能非常好,下图是官方给出的性能对比:
可以看到Caffeine的性能遥遥领先!
缓存使用的基本API:
@Test
void testBasicOps() {
// 构建cache对象
Cache<String, String> cache = Caffeine.newBuilder().build();
// 存数据
cache.put("gf", "迪丽热巴");
// 取数据
String gf = cache.getIfPresent("gf");
System.out.println("gf = " + gf);
// 取数据,包含两个参数:
// 参数一:缓存的key
// 参数二:Lambda表达式,表达式参数就是缓存的key,方法体是查询数据库的逻辑
// 优先根据key查询JVM缓存,如果未命中,则执行参数二的Lambda表达式
String defaultGF = cache.get("defaultGF", key -> {
// 根据key去数据库查询数据
return "柳岩";
});
System.out.println("defaultGF = " + defaultGF);
}
Caffeine既然是缓存的一种,肯定需要有缓存的清除策略,不然的话内存总会有耗尽的时候。
Caffeine提供了三种缓存驱逐策略:
基于容量:设置缓存的数量上限
// 创建缓存对象 Cache<String, String> cache = Caffeine.newBuilder() .maximumSize(1) // 设置缓存大小上限为 1 .build();
基于时间:设置缓存的有效时间
// 创建缓存对象 Cache<String, String> cache = Caffeine.newBuilder() // 设置缓存有效期为 10 秒,从最后一次写入开始计时 .expireAfterWrite(Duration.ofSeconds(10)) .build();
基于引用:设置缓存为软引用或弱引用,利用GC来回收缓存数据。性能较差,不建议使用。
注意:在默认情况下,当一个缓存元素过期的时候,Caffeine不会自动立即将其清理和驱逐。而是在一次读或写操作后,或者在空闲时间完成对失效数据的驱逐。
2.3.实现JVM进程缓存
2.3.1.需求
利用Caffeine实现下列需求:
- 给根据id查询商品的业务添加缓存,缓存未命中时查询数据库
- 给根据id查询商品库存的业务添加缓存,缓存未命中时查询数据库
- 缓存初始大小为100
- 缓存上限为10000
2.3.2.实现
首先,我们需要定义两个Caffeine的缓存对象,分别保存商品、库存的缓存数据。
在item-service的com.heima.item.config
包下定义CaffeineConfig
类:
package com.heima.item.config;
import com.github.benmanes.caffeine.cache.Cache;
import com.github.benmanes.caffeine.cache.Caffeine;
import com.heima.item.pojo.Item;
import com.heima.item.pojo.ItemStock;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
public class CaffeineConfig {
@Bean
public Cache<Long, Item> itemCache(){
return Caffeine.newBuilder()
.initialCapacity(100)
.maximumSize(10_000)
.build();
}
@Bean
public Cache<Long, ItemStock> stockCache(){
return Caffeine.newBuilder()
.initialCapacity(100)
.maximumSize(10_000)
.build();
}
}
然后,修改item-service中的com.heima.item.web
包下的ItemController类,添加缓存逻辑:
@RestController
@RequestMapping("item")
public class ItemController {
@Autowired
private IItemService itemService;
@Autowired
private IItemStockService stockService;
@Autowired
private Cache<Long, Item> itemCache;
@Autowired
private Cache<Long, ItemStock> stockCache;
// ...其它略
@GetMapping("/{id}")
public Item findById(@PathVariable("id") Long id) {
return itemCache.get(id, key -> itemService.query()
.ne("status", 3).eq("id", key)
.one()
);
}
@GetMapping("/stock/{id}")
public ItemStock findStockById(@PathVariable("id") Long id) {
return stockCache.get(id, key -> stockService.getById(key));
}
}
3.Lua语法入门
Nginx编程需要用到Lua语言,因此我们必须先入门Lua的基本语法。
3.1.初识Lua
Lua 是一种轻量小巧的脚本语言,用标准C语言编写并以源代码形式开放, 其设计目的是为了嵌入应用程序中,从而为应用程序提供灵活的扩展和定制功能。官网:https://www.lua.org/
Lua经常嵌入到C语言开发的程序中,例如游戏开发、游戏插件等。
Nginx本身也是C语言开发,因此也允许基于Lua做拓展。
3.1.HelloWorld
CentOS7默认已经安装了Lua语言环境,所以可以直接运行Lua代码。
1)在Linux虚拟机的任意目录下,新建一个hello.lua文件
2)添加下面的内容
print("Hello World!")
3)运行
3.2.变量和循环
学习任何语言必然离不开变量,而变量的声明必须先知道数据的类型。
3.2.1.Lua的数据类型
Lua中支持的常见数据类型包括:
另外,Lua提供了type()函数来判断一个变量的数据类型:
3.2.2.声明变量
Lua声明变量的时候无需指定数据类型,而是用local来声明变量为局部变量:
-- 声明字符串,可以用单引号或双引号,
local str = 'hello'
-- 字符串拼接可以使用 ..
local str2 = 'hello' .. 'world'
-- 声明数字
local num = 21
-- 声明布尔类型
local flag = true
Lua中的table类型既可以作为数组,又可以作为Java中的map来使用。数组就是特殊的table,key是数组角标而已:
-- 声明数组 ,key为角标的 table
local arr = {'java', 'python', 'lua'}
-- 声明table,类似java的map
local map = {name='Jack', age=21}
Lua中的数组角标是从1开始,访问的时候与Java中类似:
-- 访问数组,lua数组的角标从1开始
print(arr[1])
Lua中的table可以用key来访问:
-- 访问table
print(map['name'])
print(map.name)
3.2.3.循环
对于table,我们可以利用for循环来遍历。不过数组和普通table遍历略有差异。
遍历数组:
-- 声明数组 key为索引的 table
local arr = {'java', 'python', 'lua'}
-- 遍历数组
for index,value in ipairs(arr) do
print(index, value)
end
遍历普通table
-- 声明map,也就是table
local map = {name='Jack', age=21}
-- 遍历table
for key,value in pairs(map) do
print(key, value)
end
3.3.条件控制、函数
Lua中的条件控制和函数声明与Java类似。
3.3.1.函数
定义函数的语法:
function 函数名( argument1, argument2..., argumentn)
-- 函数体
return 返回值
end
例如,定义一个函数,用来打印数组:
function printArr(arr)
for index, value in ipairs(arr) do
print(value)
end
end
3.3.2.条件控制
类似Java的条件控制,例如if、else语法:
if(布尔表达式)
then
--[ 布尔表达式为 true 时执行该语句块 --]
else
--[ 布尔表达式为 false 时执行该语句块 --]
end
与java不同,布尔表达式中的逻辑运算是基于英文单词:
3.3.3.案例
需求:自定义一个函数,可以打印table,当参数为nil时,打印错误信息
function printArr(arr)
if not arr then
print('数组不能为空!')
end
for index, value in ipairs(arr) do
print(value)
end
end
4.实现多级缓存
多级缓存的实现离不开Nginx编程,而Nginx编程又离不开OpenResty。
4.1.安装OpenResty
OpenResty® 是一个基于 Nginx的高性能 Web 平台,用于方便地搭建能够处理超高并发、扩展性极高的动态 Web 应用、Web 服务和动态网关。具备下列特点:
- 具备Nginx的完整功能
- 基于Lua语言进行扩展,集成了大量精良的 Lua 库、第三方模块
- 允许使用Lua自定义业务逻辑、自定义库
官方网站: https://openresty.org/cn/
安装Lua可以参考课前资料提供的《安装OpenResty.md》:
4.2.OpenResty快速入门
我们希望达到的多级缓存架构如图:
其中:
windows上的nginx用来做反向代理服务,将前端的查询商品的ajax请求代理到OpenResty集群
OpenResty集群用来编写多级缓存业务
4.2.1.反向代理流程
现在,商品详情页使用的是假的商品数据。不过在浏览器中,可以看到页面有发起ajax请求查询真实商品数据。
这个请求如下:
请求地址是localhost,端口是80,就被windows上安装的Nginx服务给接收到了。然后代理给了OpenResty集群:
我们需要在OpenResty中编写业务,查询商品数据并返回到浏览器。
但是这次,我们先在OpenResty接收请求,返回假的商品数据。
4.2.2.OpenResty监听请求
OpenResty的很多功能都依赖于其目录下的Lua库,需要在nginx.conf中指定依赖库的目录,并导入依赖:
1)添加对OpenResty的Lua模块的加载
修改/usr/local/openresty/nginx/conf/nginx.conf
文件,在其中的http下面,添加下面代码:
#lua 模块
lua_package_path "/usr/local/openresty/lualib/?.lua;;";
#c模块
lua_package_cpath "/usr/local/openresty/lualib/?.so;;";
2)监听/api/item路径
修改/usr/local/openresty/nginx/conf/nginx.conf
文件,在nginx.conf的server下面,添加对/api/item这个路径的监听:
location /api/item {
# 默认的响应类型
default_type application/json;
# 响应结果由lua/item.lua文件来决定
content_by_lua_file lua/item.lua;
}
这个监听,就类似于SpringMVC中的@GetMapping("/api/item")
做路径映射。
而content_by_lua_file lua/item.lua
则相当于调用item.lua这个文件,执行其中的业务,把结果返回给用户。相当于java中调用service。
4.2.3.编写item.lua
1)在/usr/loca/openresty/nginx
目录创建文件夹:lua
2)在/usr/loca/openresty/nginx/lua
文件夹下,新建文件:item.lua
3)编写item.lua,返回假数据
item.lua中,利用ngx.say()函数返回数据到Response中
ngx.say('{"id":10001,"name":"SALSA AIR","title":"RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4","price":17900,"image":"https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp","category":"拉杆箱","brand":"RIMOWA","spec":"","status":1,"createTime":"2019-04-30T16:00:00.000+00:00","updateTime":"2019-04-30T16:00:00.000+00:00","stock":2999,"sold":31290}')
4)重新加载配置
nginx -s reload
刷新商品页面:http://localhost/item.html?id=1001,即可看到效果:
4.3.请求参数处理
上一节中,我们在OpenResty接收前端请求,但是返回的是假数据。
要返回真实数据,必须根据前端传递来的商品id,查询商品信息才可以。
那么如何获取前端传递的商品参数呢?
4.3.1.获取参数的API
OpenResty中提供了一些API用来获取不同类型的前端请求参数:
4.3.2.获取参数并返回
在前端发起的ajax请求如图:
可以看到商品id是以路径占位符方式传递的,因此可以利用正则表达式匹配的方式来获取ID
1)获取商品id
修改/usr/loca/openresty/nginx/nginx.conf
文件中监听/api/item的代码,利用正则表达式获取ID:
location ~ /api/item/(\d+) {
# 默认的响应类型
default_type application/json;
# 响应结果由lua/item.lua文件来决定
content_by_lua_file lua/item.lua;
}
2)拼接ID并返回
修改/usr/loca/openresty/nginx/lua/item.lua
文件,获取id并拼接到结果中返回:
-- 获取商品id
local id = ngx.var[1]
-- 拼接并返回
ngx.say('{"id":' .. id .. ',"name":"SALSA AIR","title":"RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4","price":17900,"image":"https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp","category":"拉杆箱","brand":"RIMOWA","spec":"","status":1,"createTime":"2019-04-30T16:00:00.000+00:00","updateTime":"2019-04-30T16:00:00.000+00:00","stock":2999,"sold":31290}')
3)重新加载并测试
运行命令以重新加载OpenResty配置:
nginx -s reload
刷新页面可以看到结果中已经带上了ID:
4.4.查询Tomcat
拿到商品ID后,本应去缓存中查询商品信息,不过目前我们还未建立nginx、redis缓存。因此,这里我们先根据商品id去tomcat查询商品信息。我们实现如图部分:
需要注意的是,我们的OpenResty是在虚拟机,Tomcat是在Windows电脑上。两者IP一定不要搞错了。
4.4.1.发送http请求的API
nginx提供了内部API用以发送http请求:
local resp = ngx.location.capture("/path",{
method = ngx.HTTP_GET, -- 请求方式
args = {a=1,b=2}, -- get方式传参数
})
返回的响应内容包括:
- resp.status:响应状态码
- resp.header:响应头,是一个table
- resp.body:响应体,就是响应数据
注意:这里的path是路径,并不包含IP和端口。这个请求会被nginx内部的server监听并处理。
但是我们希望这个请求发送到Tomcat服务器,所以还需要编写一个server来对这个路径做反向代理:
location /path {
# 这里是windows电脑的ip和Java服务端口,需要确保windows防火墙处于关闭状态
proxy_pass http://192.168.150.1:8081;
}
原理如图:
4.4.2.封装http工具
下面,我们封装一个发送Http请求的工具,基于ngx.location.capture来实现查询tomcat。
1)添加反向代理,到windows的Java服务
因为item-service中的接口都是/item开头,所以我们监听/item路径,代理到windows上的tomcat服务。
修改 /usr/local/openresty/nginx/conf/nginx.conf
文件,添加一个location:
location /item {
proxy_pass http://192.168.150.1:8081;
}
以后,只要我们调用ngx.location.capture("/item")
,就一定能发送请求到windows的tomcat服务。
2)封装工具类
之前我们说过,OpenResty启动时会加载以下两个目录中的工具文件:
所以,自定义的http工具也需要放到这个目录下。
在/usr/local/openresty/lualib
目录下,新建一个common.lua文件:
vi /usr/local/openresty/lualib/common.lua
内容如下:
-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)
local resp = ngx.location.capture(path,{
method = ngx.HTTP_GET,
args = params,
})
if not resp then
-- 记录错误信息,返回404
ngx.log(ngx.ERR, "http请求查询失败, path: ", path , ", args: ", args)
ngx.exit(404)
end
return resp.body
end
-- 将方法导出
local _M = {
read_http = read_http
}
return _M
这个工具将read_http函数封装到_M这个table类型的变量中,并且返回,这类似于导出。
使用的时候,可以利用require('common')
来导入该函数库,这里的common是函数库的文件名。
3)实现商品查询
最后,我们修改/usr/local/openresty/lua/item.lua
文件,利用刚刚封装的函数库实现对tomcat的查询:
-- 引入自定义common工具模块,返回值是common中返回的 _M
local common = require("common")
-- 从 common中获取read_http这个函数
local read_http = common.read_http
-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品
local itemJSON = read_http("/item/".. id, nil)
-- 根据id查询商品库存
local itemStockJSON = read_http("/item/stock/".. id, nil)
这里查询到的结果是json字符串,并且包含商品、库存两个json字符串,页面最终需要的是把两个json拼接为一个json:
这就需要我们先把JSON变为lua的table,完成数据整合后,再转为JSON。
4.4.3.CJSON工具类
OpenResty提供了一个cjson的模块用来处理JSON的序列化和反序列化。
官方地址: https://github.com/openresty/lua-cjson/
1)引入cjson模块:
local cjson = require "cjson"
2)序列化:
local obj = {
name = 'jack',
age = 21
}
-- 把 table 序列化为 json
local json = cjson.encode(obj)
3)反序列化:
local json = '{"name": "jack", "age": 21}'
-- 反序列化 json为 table
local obj = cjson.decode(json);
print(obj.name)
4.4.4.实现Tomcat查询
下面,我们修改之前的item.lua中的业务,添加json处理功能:
-- 导入common函数库
local common = require('common')
local read_http = common.read_http
-- 导入cjson库
local cjson = require('cjson')
-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品
local itemJSON = read_http("/item/".. id, nil)
-- 根据id查询商品库存
local itemStockJSON = read_http("/item/stock/".. id, nil)
-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold
-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))
4.4.5.基于ID负载均衡
刚才的代码中,我们的tomcat是单机部署。而实际开发中,tomcat一定是集群模式:
因此,OpenResty需要对tomcat集群做负载均衡。
而默认的负载均衡规则是轮询模式,当我们查询/item/10001时:
- 第一次会访问8081端口的tomcat服务,在该服务内部就形成了JVM进程缓存
- 第二次会访问8082端口的tomcat服务,该服务内部没有JVM缓存(因为JVM缓存无法共享),会查询数据库
- ...
你看,因为轮询的原因,第一次查询8081形成的JVM缓存并未生效,直到下一次再次访问到8081时才可以生效,缓存命中率太低了。
怎么办?
如果能让同一个商品,每次查询时都访问同一个tomcat服务,那么JVM缓存就一定能生效了。
也就是说,我们需要根据商品id做负载均衡,而不是轮询。
1)原理
nginx提供了基于请求路径做负载均衡的算法:
nginx根据请求路径做hash运算,把得到的数值对tomcat服务的数量取余,余数是几,就访问第几个服务,实现负载均衡。
例如:
- 我们的请求路径是 /item/10001
- tomcat总数为2台(8081、8082)
- 对请求路径/item/1001做hash运算求余的结果为1
- 则访问第一个tomcat服务,也就是8081
只要id不变,每次hash运算结果也不会变,那就可以保证同一个商品,一直访问同一个tomcat服务,确保JVM缓存生效。
2)实现
修改/usr/local/openresty/nginx/conf/nginx.conf
文件,实现基于ID做负载均衡。
首先,定义tomcat集群,并设置基于路径做负载均衡:
upstream tomcat-cluster {
hash $request_uri;
server 192.168.150.1:8081;
server 192.168.150.1:8082;
}
然后,修改对tomcat服务的反向代理,目标指向tomcat集群:
location /item {
proxy_pass http://tomcat-cluster;
}
重新加载OpenResty
nginx -s reload
3)测试
启动两台tomcat服务:
同时启动:
清空日志后,再次访问页面,可以看到不同id的商品,访问到了不同的tomcat服务:
4.5.Redis缓存预热
Redis缓存会面临冷启动问题:
冷启动:服务刚刚启动时,Redis中并没有缓存,如果所有商品数据都在第一次查询时添加缓存,可能会给数据库带来较大压力。
缓存预热:在实际开发中,我们可以利用大数据统计用户访问的热点数据,在项目启动时将这些热点数据提前查询并保存到Redis中。
我们数据量较少,并且没有数据统计相关功能,目前可以在启动时将所有数据都放入缓存中。
1)利用Docker安装Redis
docker run --name redis -p 6379:6379 -d redis redis-server --appendonly yes
2)在item-service服务中引入Redis依赖
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
3)配置Redis地址
spring:
redis:
host: 192.168.150.101
4)编写初始化类
缓存预热需要在项目启动时完成,并且必须是拿到RedisTemplate之后。
这里我们利用InitializingBean接口来实现,因为InitializingBean可以在对象被Spring创建并且成员变量全部注入后执行。
package com.heima.item.config;
import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.heima.item.pojo.Item;
import com.heima.item.pojo.ItemStock;
import com.heima.item.service.IItemService;
import com.heima.item.service.IItemStockService;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Component;
import java.util.List;
@Component
public class RedisHandler implements InitializingBean {
@Autowired
private StringRedisTemplate redisTemplate;
@Autowired
private IItemService itemService;
@Autowired
private IItemStockService stockService;
private static final ObjectMapper MAPPER = new ObjectMapper();
@Override
public void afterPropertiesSet() throws Exception {
// 初始化缓存
// 1.查询商品信息
List<Item> itemList = itemService.list();
// 2.放入缓存
for (Item item : itemList) {
// 2.1.item序列化为JSON
String json = MAPPER.writeValueAsString(item);
// 2.2.存入redis
redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
}
// 3.查询商品库存信息
List<ItemStock> stockList = stockService.list();
// 4.放入缓存
for (ItemStock stock : stockList) {
// 2.1.item序列化为JSON
String json = MAPPER.writeValueAsString(stock);
// 2.2.存入redis
redisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);
}
}
}
4.6.查询Redis缓存
现在,Redis缓存已经准备就绪,我们可以再OpenResty中实现查询Redis的逻辑了。如下图红框所示:
当请求进入OpenResty之后:
- 优先查询Redis缓存
- 如果Redis缓存未命中,再查询Tomcat
4.6.1.封装Redis工具
OpenResty提供了操作Redis的模块,我们只要引入该模块就能直接使用。但是为了方便,我们将Redis操作封装到之前的common.lua工具库中。
修改/usr/local/openresty/lualib/common.lua
文件:
1)引入Redis模块,并初始化Redis对象
-- 导入redis
local redis = require('resty.redis')
-- 初始化redis
local red = redis:new()
red:set_timeouts(1000, 1000, 1000)
2)封装函数,用来释放Redis连接,其实是放入连接池
-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)
local pool_max_idle_time = 10000 -- 连接的空闲时间,单位是毫秒
local pool_size = 100 --连接池大小
local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)
if not ok then
ngx.log(ngx.ERR, "放入redis连接池失败: ", err)
end
end
3)封装函数,根据key查询Redis数据
-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)
-- 获取一个连接
local ok, err = red:connect(ip, port)
if not ok then
ngx.log(ngx.ERR, "连接redis失败 : ", err)
return nil
end
-- 查询redis
local resp, err = red:get(key)
-- 查询失败处理
if not resp then
ngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)
end
--得到的数据为空处理
if resp == ngx.null then
resp = nil
ngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)
end
close_redis(red)
return resp
end
4)导出
-- 将方法导出
local _M = {
read_http = read_http,
read_redis = read_redis
}
return _M
完整的common.lua:
-- 导入redis
local redis = require('resty.redis')
-- 初始化redis
local red = redis:new()
red:set_timeouts(1000, 1000, 1000)
-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)
local pool_max_idle_time = 10000 -- 连接的空闲时间,单位是毫秒
local pool_size = 100 --连接池大小
local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)
if not ok then
ngx.log(ngx.ERR, "放入redis连接池失败: ", err)
end
end
-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)
-- 获取一个连接
local ok, err = red:connect(ip, port)
if not ok then
ngx.log(ngx.ERR, "连接redis失败 : ", err)
return nil
end
-- 查询redis
local resp, err = red:get(key)
-- 查询失败处理
if not resp then
ngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)
end
--得到的数据为空处理
if resp == ngx.null then
resp = nil
ngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)
end
close_redis(red)
return resp
end
-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)
local resp = ngx.location.capture(path,{
method = ngx.HTTP_GET,
args = params,
})
if not resp then
-- 记录错误信息,返回404
ngx.log(ngx.ERR, "http查询失败, path: ", path , ", args: ", args)
ngx.exit(404)
end
return resp.body
end
-- 将方法导出
local _M = {
read_http = read_http,
read_redis = read_redis
}
return _M
4.6.2.实现Redis查询
接下来,我们就可以去修改item.lua文件,实现对Redis的查询了。
查询逻辑是:
- 根据id查询Redis
- 如果查询失败则继续查询Tomcat
- 将查询结果返回
1)修改/usr/local/openresty/lua/item.lua
文件,添加一个查询函数:
-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 封装查询函数
function read_data(key, path, params)
-- 查询本地缓存
local val = read_redis("127.0.0.1", 6379, key)
-- 判断查询结果
if not val then
ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
-- redis查询失败,去查询http
val = read_http(path, params)
end
-- 返回数据
return val
end
2)而后修改商品查询、库存查询的业务:
3)完整的item.lua代码:
-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 导入cjson库
local cjson = require('cjson')
-- 封装查询函数
function read_data(key, path, params)
-- 查询本地缓存
local val = read_redis("127.0.0.1", 6379, key)
-- 判断查询结果
if not val then
ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
-- redis查询失败,去查询http
val = read_http(path, params)
end
-- 返回数据
return val
end
-- 获取路径参数
local id = ngx.var[1]
-- 查询商品信息
local itemJSON = read_data("item:id:" .. id, "/item/" .. id, nil)
-- 查询库存信息
local stockJSON = read_data("item:stock:id:" .. id, "/item/stock/" .. id, nil)
-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold
-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))
4.7.Nginx本地缓存
现在,整个多级缓存中只差最后一环,也就是nginx的本地缓存了。如图:
4.7.1.本地缓存API
OpenResty为Nginx提供了shard dict的功能,可以在nginx的多个worker之间共享数据,实现缓存功能。
1)开启共享字典,在nginx.conf的http下添加配置:
# 共享字典,也就是本地缓存,名称叫做:item_cache,大小150m
lua_shared_dict item_cache 150m;
2)操作共享字典:
-- 获取本地缓存对象
local item_cache = ngx.shared.item_cache
-- 存储, 指定key、value、过期时间,单位s,默认为0代表永不过期
item_cache:set('key', 'value', 1000)
-- 读取
local val = item_cache:get('key')
4.7.2.实现本地缓存查询
1)修改/usr/local/openresty/lua/item.lua
文件,修改read_data查询函数,添加本地缓存逻辑:
-- 导入共享词典,本地缓存
local item_cache = ngx.shared.item_cache
-- 封装查询函数
function read_data(key, expire, path, params)
-- 查询本地缓存
local val = item_cache:get(key)
if not val then
ngx.log(ngx.ERR, "本地缓存查询失败,尝试查询Redis, key: ", key)
-- 查询redis
val = read_redis("127.0.0.1", 6379, key)
-- 判断查询结果
if not val then
ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
-- redis查询失败,去查询http
val = read_http(path, params)
end
end
-- 查询成功,把数据写入本地缓存
item_cache:set(key, val, expire)
-- 返回数据
return val
end
2)修改item.lua中查询商品和库存的业务,实现最新的read_data函数:
其实就是多了缓存时间参数,过期后nginx缓存会自动删除,下次访问即可更新缓存。
这里给商品基本信息设置超时时间为30分钟,库存为1分钟。
因为库存更新频率较高,如果缓存时间过长,可能与数据库差异较大。
3)完整的item.lua文件:
-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 导入cjson库
local cjson = require('cjson')
-- 导入共享词典,本地缓存
local item_cache = ngx.shared.item_cache
-- 封装查询函数
function read_data(key, expire, path, params)
-- 查询本地缓存
local val = item_cache:get(key)
if not val then
ngx.log(ngx.ERR, "本地缓存查询失败,尝试查询Redis, key: ", key)
-- 查询redis
val = read_redis("127.0.0.1", 6379, key)
-- 判断查询结果
if not val then
ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
-- redis查询失败,去查询http
val = read_http(path, params)
end
end
-- 查询成功,把数据写入本地缓存
item_cache:set(key, val, expire)
-- 返回数据
return val
end
-- 获取路径参数
local id = ngx.var[1]
-- 查询商品信息
local itemJSON = read_data("item:id:" .. id, 1800, "/item/" .. id, nil)
-- 查询库存信息
local stockJSON = read_data("item:stock:id:" .. id, 60, "/item/stock/" .. id, nil)
-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold
-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))
5.缓存同步
大多数情况下,浏览器查询到的都是缓存数据,如果缓存数据与数据库数据存在较大差异,可能会产生比较严重的后果。
所以我们必须保证数据库数据、缓存数据的一致性,这就是缓存与数据库的同步。
5.1.数据同步策略
缓存数据同步的常见方式有三种:
设置有效期:给缓存设置有效期,到期后自动删除。再次查询时更新
- 优势:简单、方便
- 缺点:时效性差,缓存过期之前可能不一致
- 场景:更新频率较低,时效性要求低的业务
同步双写:在修改数据库的同时,直接修改缓存
- 优势:时效性强,缓存与数据库强一致
- 缺点:有代码侵入,耦合度高;
- 场景:对一致性、时效性要求较高的缓存数据
**异步通知:**修改数据库时发送事件通知,相关服务监听到通知后修改缓存数据
- 优势:低耦合,可以同时通知多个缓存服务
- 缺点:时效性一般,可能存在中间不一致状态
- 场景:时效性要求一般,有多个服务需要同步
而异步实现又可以基于MQ或者Canal来实现:
1)基于MQ的异步通知:
解读:
- 商品服务完成对数据的修改后,只需要发送一条消息到MQ中。
- 缓存服务监听MQ消息,然后完成对缓存的更新
依然有少量的代码侵入。
2)基于Canal的通知
解读:
- 商品服务完成商品修改后,业务直接结束,没有任何代码侵入
- Canal监听MySQL变化,当发现变化后,立即通知缓存服务
- 缓存服务接收到canal通知,更新缓存
代码零侵入
5.2.安装Canal
5.2.1.认识Canal
Canal [kə'næl],译意为水道/管道/沟渠,canal是阿里巴巴旗下的一款开源项目,基于Java开发。基于数据库增量日志解析,提供增量数据订阅&消费。GitHub的地址:https://github.com/alibaba/canal
Canal是基于mysql的主从同步来实现的,MySQL主从同步的原理如下:
- 1)MySQL master 将数据变更写入二进制日志( binary log),其中记录的数据叫做binary log events
- 2)MySQL slave 将 master 的 binary log events拷贝到它的中继日志(relay log)
- 3)MySQL slave 重放 relay log 中事件,将数据变更反映它自己的数据
而Canal就是把自己伪装成MySQL的一个slave节点,从而监听master的binary log变化。再把得到的变化信息通知给Canal的客户端,进而完成对其它数据库的同步。
5.2.2.安装Canal
安装和配置Canal参考课前资料文档:
5.3.监听Canal
Canal提供了各种语言的客户端,当Canal监听到binlog变化时,会通知Canal的客户端。
我们可以利用Canal提供的Java客户端,监听Canal通知消息。当收到变化的消息时,完成对缓存的更新。
不过这里我们会使用GitHub上的第三方开源的canal-starter客户端。地址:https://github.com/NormanGyllenhaal/canal-client
与SpringBoot完美整合,自动装配,比官方客户端要简单好用很多。
5.3.1.引入依赖:
<dependency>
<groupId>top.javatool</groupId>
<artifactId>canal-spring-boot-starter</artifactId>
<version>1.2.1-RELEASE</version>
</dependency>
5.3.2.编写配置:
canal:
destination: heima # canal的集群名字,要与安装canal时设置的名称一致
server: 192.168.150.101:11111 # canal服务地址
5.3.3.修改Item实体类
通过@Id、@Column、等注解完成Item与数据库表字段的映射:
package com.heima.item.pojo;
import com.baomidou.mybatisplus.annotation.IdType;
import com.baomidou.mybatisplus.annotation.TableField;
import com.baomidou.mybatisplus.annotation.TableId;
import com.baomidou.mybatisplus.annotation.TableName;
import lombok.Data;
import org.springframework.data.annotation.Id;
import org.springframework.data.annotation.Transient;
import javax.persistence.Column;
import java.util.Date;
@Data
@TableName("tb_item")
public class Item {
@TableId(type = IdType.AUTO)
@Id
private Long id;//商品id
@Column(name = "name")
private String name;//商品名称
private String title;//商品标题
private Long price;//价格(分)
private String image;//商品图片
private String category;//分类名称
private String brand;//品牌名称
private String spec;//规格
private Integer status;//商品状态 1-正常,2-下架
private Date createTime;//创建时间
private Date updateTime;//更新时间
@TableField(exist = false)
@Transient
private Integer stock;
@TableField(exist = false)
@Transient
private Integer sold;
}
5.3.4.编写监听器
通过实现EntryHandler<T>
接口编写监听器,监听Canal消息。注意两点:
- 实现类通过
@CanalTable("tb_item")
指定监听的表信息 - EntryHandler的泛型是与表对应的实体类
package com.heima.item.canal;
import com.github.benmanes.caffeine.cache.Cache;
import com.heima.item.config.RedisHandler;
import com.heima.item.pojo.Item;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import top.javatool.canal.client.annotation.CanalTable;
import top.javatool.canal.client.handler.EntryHandler;
@CanalTable("tb_item")
@Component
public class ItemHandler implements EntryHandler<Item> {
@Autowired
private RedisHandler redisHandler;
@Autowired
private Cache<Long, Item> itemCache;
@Override
public void insert(Item item) {
// 写数据到JVM进程缓存
itemCache.put(item.getId(), item);
// 写数据到redis
redisHandler.saveItem(item);
}
@Override
public void update(Item before, Item after) {
// 写数据到JVM进程缓存
itemCache.put(after.getId(), after);
// 写数据到redis
redisHandler.saveItem(after);
}
@Override
public void delete(Item item) {
// 删除数据到JVM进程缓存
itemCache.invalidate(item.getId());
// 删除数据到redis
redisHandler.deleteItemById(item.getId());
}
}
在这里对Redis的操作都封装到了RedisHandler这个对象中,是我们之前做缓存预热时编写的一个类,内容如下:
package com.heima.item.config;
import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.heima.item.pojo.Item;
import com.heima.item.pojo.ItemStock;
import com.heima.item.service.IItemService;
import com.heima.item.service.IItemStockService;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Component;
import java.util.List;
@Component
public class RedisHandler implements InitializingBean {
@Autowired
private StringRedisTemplate redisTemplate;
@Autowired
private IItemService itemService;
@Autowired
private IItemStockService stockService;
private static final ObjectMapper MAPPER = new ObjectMapper();
@Override
public void afterPropertiesSet() throws Exception {
// 初始化缓存
// 1.查询商品信息
List<Item> itemList = itemService.list();
// 2.放入缓存
for (Item item : itemList) {
// 2.1.item序列化为JSON
String json = MAPPER.writeValueAsString(item);
// 2.2.存入redis
redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
}
// 3.查询商品库存信息
List<ItemStock> stockList = stockService.list();
// 4.放入缓存
for (ItemStock stock : stockList) {
// 2.1.item序列化为JSON
String json = MAPPER.writeValueAsString(stock);
// 2.2.存入redis
redisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);
}
}
public void saveItem(Item item) {
try {
String json = MAPPER.writeValueAsString(item);
redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
} catch (JsonProcessingException e) {
throw new RuntimeException(e);
}
}
public void deleteItemById(Long id) {
redisTemplate.delete("item:id:" + id);
}
}
Redis高级篇之实践
今日内容
- Redis键值设计
- 批处理优化
- 服务端优化
- 集群最佳实践
1、Redis键值设计
1.1、优雅的key结构
Redis的Key虽然可以自定义,但最好遵循下面的几个最佳实践约定:
- 遵循基本格式:[业务名称]:[数据名]:[id]
- 长度不超过44字节
- 不包含特殊字符
例如:我们的登录业务,保存用户信息,其key可以设计成如下格式:
这样设计的好处:
- 可读性强
- 避免key冲突
- 方便管理
- 更节省内存: key是string类型,底层编码包含int、embstr和raw三种。embstr在小于44字节使用,采用连续内存空间,内存占用更小。当字节数大于44字节时,会转为raw模式存储,在raw模式下,内存空间不是连续的,而是采用一个指针指向了另外一段内存空间,在这段空间里存储SDS内容,这样空间不连续,访问的时候性能也就会收到影响,还有可能产生内存碎片
1.2、拒绝BigKey
BigKey通常以Key的大小和Key中成员的数量来综合判定,例如:
- Key本身的数据量过大:一个String类型的Key,它的值为5 MB
- Key中的成员数过多:一个ZSET类型的Key,它的成员数量为10,000个
- Key中成员的数据量过大:一个Hash类型的Key,它的成员数量虽然只有1,000个但这些成员的Value(值)总大小为100 MB
那么如何判断元素的大小呢?redis也给我们提供了命令
推荐值:
- 单个key的value小于10KB
- 对于集合类型的key,建议元素数量小于1000
1.2.1、BigKey的危害
- 网络阻塞
- 对BigKey执行读请求时,少量的QPS就可能导致带宽使用率被占满,导致Redis实例,乃至所在物理机变慢
- 数据倾斜
- BigKey所在的Redis实例内存使用率远超其他实例,无法使数据分片的内存资源达到均衡
- Redis阻塞
- 对元素较多的hash、list、zset等做运算会耗时较旧,使主线程被阻塞
- CPU压力
- 对BigKey的数据序列化和反序列化会导致CPU的使用率飙升,影响Redis实例和本机其它应用
1.2.2、如何发现BigKey
①redis-cli --bigkeys
利用redis-cli提供的--bigkeys参数,可以遍历分析所有key,并返回Key的整体统计信息与每个数据的Top1的big key
命令:redis-cli -a 密码 --bigkeys
②scan扫描
自己编程,利用scan扫描Redis中的所有key,利用strlen、hlen等命令判断key的长度(此处不建议使用MEMORY USAGE)
scan 命令调用完后每次会返回2个元素,第一个是下一次迭代的光标,第一次光标会设置为0,当最后一次scan 返回的光标等于0时,表示整个scan遍历结束了,第二个返回的是List,一个匹配的key的数组
import com.heima.jedis.util.JedisConnectionFactory;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.ScanResult;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class JedisTest {
private Jedis jedis;
@BeforeEach
void setUp() {
// 1.建立连接
// jedis = new Jedis("192.168.150.101", 6379);
jedis = JedisConnectionFactory.getJedis();
// 2.设置密码
jedis.auth("123321");
// 3.选择库
jedis.select(0);
}
final static int STR_MAX_LEN = 10 * 1024;
final static int HASH_MAX_LEN = 500;
@Test
void testScan() {
int maxLen = 0;
long len = 0;
String cursor = "0";
do {
// 扫描并获取一部分key
ScanResult<String> result = jedis.scan(cursor);
// 记录cursor
cursor = result.getCursor();
List<String> list = result.getResult();
if (list == null || list.isEmpty()) {
break;
}
// 遍历
for (String key : list) {
// 判断key的类型
String type = jedis.type(key);
switch (type) {
case "string":
len = jedis.strlen(key);
maxLen = STR_MAX_LEN;
break;
case "hash":
len = jedis.hlen(key);
maxLen = HASH_MAX_LEN;
break;
case "list":
len = jedis.llen(key);
maxLen = HASH_MAX_LEN;
break;
case "set":
len = jedis.scard(key);
maxLen = HASH_MAX_LEN;
break;
case "zset":
len = jedis.zcard(key);
maxLen = HASH_MAX_LEN;
break;
default:
break;
}
if (len >= maxLen) {
System.out.printf("Found big key : %s, type: %s, length or size: %d %n", key, type, len);
}
}
} while (!cursor.equals("0"));
}
@AfterEach
void tearDown() {
if (jedis != null) {
jedis.close();
}
}
}
③第三方工具
- 利用第三方工具,如 Redis-Rdb-Tools 分析RDB快照文件,全面分析内存使用情况
- https://github.com/sripathikrishnan/redis-rdb-tools
④网络监控
- 自定义工具,监控进出Redis的网络数据,超出预警值时主动告警
- 一般阿里云搭建的云服务器就有相关监控页面
1.2.3、如何删除BigKey
BigKey内存占用较多,即便时删除这样的key也需要耗费很长时间,导致Redis主线程阻塞,引发一系列问题。
- redis 3.0 及以下版本
- 如果是集合类型,则遍历BigKey的元素,先逐个删除子元素,最后删除BigKey
- Redis 4.0以后
- Redis在4.0后提供了异步删除的命令:unlink
1.3、恰当的数据类型
例1:比如存储一个User对象,我们有三种存储方式:
①方式一:json字符串
user:1 | {"name": "Jack", "age": 21} |
---|
优点:实现简单粗暴
缺点:数据耦合,不够灵活
②方式二:字段打散
user:1:name | Jack |
---|---|
user:1:age | 21 |
优点:可以灵活访问对象任意字段
缺点:占用空间大、没办法做统一控制
③方式三:hash(推荐)
user:1 | name | jack |
age | 21 |
优点:底层使用ziplist,空间占用小,可以灵活访问对象的任意字段
缺点:代码相对复杂
例2:假如有hash类型的key,其中有100万对field和value,field是自增id,这个key存在什么问题?如何优化?
key | field | value |
someKey | id:0 | value0 |
..... | ..... | |
id:999999 | value999999 |
存在的问题:
- hash的entry数量超过500时,会使用哈希表而不是ZipList,内存占用较多
image-20220521142943350
- 可以通过hash-max-ziplist-entries配置entry上限。但是如果entry过多就会导致BigKey问题
方案一
拆分为string类型
key | value |
id:0 | value0 |
..... | ..... |
id:999999 | value999999 |
存在的问题:
- string结构底层没有太多内存优化,内存占用较多
- 想要批量获取这些数据比较麻烦
方案二
拆分为小的hash,将 id / 100 作为key, 将id % 100 作为field,这样每100个元素为一个Hash
key | field | value |
key:0 | id:00 | value0 |
..... | ..... | |
id:99 | value99 | |
key:1 | id:00 | value100 |
..... | ..... | |
id:99 | value199 | |
.... | ||
key:9999 | id:00 | value999900 |
..... | ..... | |
id:99 | value999999 |
package com.heima.test;
import com.heima.jedis.util.JedisConnectionFactory;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Pipeline;
import redis.clients.jedis.ScanResult;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class JedisTest {
private Jedis jedis;
@BeforeEach
void setUp() {
// 1.建立连接
// jedis = new Jedis("192.168.150.101", 6379);
jedis = JedisConnectionFactory.getJedis();
// 2.设置密码
jedis.auth("123321");
// 3.选择库
jedis.select(0);
}
@Test
void testSetBigKey() {
Map<String, String> map = new HashMap<>();
for (int i = 1; i <= 650; i++) {
map.put("hello_" + i, "world!");
}
jedis.hmset("m2", map);
}
@Test
void testBigHash() {
Map<String, String> map = new HashMap<>();
for (int i = 1; i <= 100000; i++) {
map.put("key_" + i, "value_" + i);
}
jedis.hmset("test:big:hash", map);
}
@Test
void testBigString() {
for (int i = 1; i <= 100000; i++) {
jedis.set("test:str:key_" + i, "value_" + i);
}
}
@Test
void testSmallHash() {
int hashSize = 100;
Map<String, String> map = new HashMap<>(hashSize);
for (int i = 1; i <= 100000; i++) {
int k = (i - 1) / hashSize;
int v = i % hashSize;
map.put("key_" + v, "value_" + v);
if (v == 0) {
jedis.hmset("test:small:hash_" + k, map);
}
}
}
@AfterEach
void tearDown() {
if (jedis != null) {
jedis.close();
}
}
}
1.4、总结
- Key的最佳实践
- 固定格式:[业务名]:[数据名]:[id]
- 足够简短:不超过44字节
- 不包含特殊字符
- Value的最佳实践:
- 合理的拆分数据,拒绝BigKey
- 选择合适数据结构
- Hash结构的entry数量不要超过1000
- 设置合理的超时时间
2、批处理优化
2.1、Pipeline
2.1.1、我们的客户端与redis服务器是这样交互的
单个命令的执行流程
N条命令的执行流程
redis处理指令是很快的,主要花费的时候在于网络传输。于是乎很容易想到将多条指令批量的传输给redis
2.1.2、MSet
Redis提供了很多Mxxx这样的命令,可以实现批量插入数据,例如:
- mset
- hmset
利用mset批量插入10万条数据
@Test
void testMxx() {
String[] arr = new String[2000];
int j;
long b = System.currentTimeMillis();
for (int i = 1; i <= 100000; i++) {
j = (i % 1000) << 1;
arr[j] = "test:key_" + i;
arr[j + 1] = "value_" + i;
if (j == 0) {
jedis.mset(arr);
}
}
long e = System.currentTimeMillis();
System.out.println("time: " + (e - b));
}
2.1.3、Pipeline
MSET虽然可以批处理,但是却只能操作部分数据类型,因此如果有对复杂数据类型的批处理需要,建议使用Pipeline
@Test
void testPipeline() {
// 创建管道
Pipeline pipeline = jedis.pipelined();
long b = System.currentTimeMillis();
for (int i = 1; i <= 100000; i++) {
// 放入命令到管道
pipeline.set("test:key_" + i, "value_" + i);
if (i % 1000 == 0) {
// 每放入1000条命令,批量执行
pipeline.sync();
}
}
long e = System.currentTimeMillis();
System.out.println("time: " + (e - b));
}
2.2、集群下的批处理
如MSET或Pipeline这样的批处理需要在一次请求中携带多条命令,而此时如果Redis是一个集群,那批处理命令的多个key必须落在一个插槽中,否则就会导致执行失败。大家可以想一想这样的要求其实很难实现,因为我们在批处理时,可能一次要插入很多条数据,这些数据很有可能不会都落在相同的节点上,这就会导致报错了
这个时候,我们可以找到4种解决方案
第一种方案:串行执行,所以这种方式没有什么意义,当然,执行起来就很简单了,缺点就是耗时过久。
第二种方案:串行slot,简单来说,就是执行前,客户端先计算一下对应的key的slot,一样slot的key就放到一个组里边,不同的,就放到不同的组里边,然后对每个组执行pipeline的批处理,他就能串行执行各个组的命令,这种做法比第一种方法耗时要少,但是缺点呢,相对来说复杂一点,所以这种方案还需要优化一下
第三种方案:并行slot,相较于第二种方案,在分组完成后串行执行,第三种方案,就变成了并行执行各个命令,所以他的耗时就非常短,但是实现呢,也更加复杂。
第四种:hash_tag,redis计算key的slot的时候,其实是根据key的有效部分来计算的,通过这种方式就能一次处理所有的key,这种方式耗时最短,实现也简单,但是如果通过操作key的有效部分,那么就会导致所有的key都落在一个节点上,产生数据倾斜的问题,所以我们推荐使用第三种方式。
2.2.1 串行化执行代码实践
public class JedisClusterTest {
private JedisCluster jedisCluster;
@BeforeEach
void setUp() {
// 配置连接池
JedisPoolConfig poolConfig = new JedisPoolConfig();
poolConfig.setMaxTotal(8);
poolConfig.setMaxIdle(8);
poolConfig.setMinIdle(0);
poolConfig.setMaxWaitMillis(1000);
HashSet<HostAndPort> nodes = new HashSet<>();
nodes.add(new HostAndPort("192.168.150.101", 7001));
nodes.add(new HostAndPort("192.168.150.101", 7002));
nodes.add(new HostAndPort("192.168.150.101", 7003));
nodes.add(new HostAndPort("192.168.150.101", 8001));
nodes.add(new HostAndPort("192.168.150.101", 8002));
nodes.add(new HostAndPort("192.168.150.101", 8003));
jedisCluster = new JedisCluster(nodes, poolConfig);
}
@Test
void testMSet() {
jedisCluster.mset("name", "Jack", "age", "21", "sex", "male");
}
@Test
void testMSet2() {
Map<String, String> map = new HashMap<>(3);
map.put("name", "Jack");
map.put("age", "21");
map.put("sex", "Male");
//对Map数据进行分组。根据相同的slot放在一个分组
//key就是slot,value就是一个组
Map<Integer, List<Map.Entry<String, String>>> result = map.entrySet()
.stream()
.collect(Collectors.groupingBy(
entry -> ClusterSlotHashUtil.calculateSlot(entry.getKey()))
);
//串行的去执行mset的逻辑
for (List<Map.Entry<String, String>> list : result.values()) {
String[] arr = new String[list.size() * 2];
int j = 0;
for (int i = 0; i < list.size(); i++) {
j = i<<2;
Map.Entry<String, String> e = list.get(0);
arr[j] = e.getKey();
arr[j + 1] = e.getValue();
}
jedisCluster.mset(arr);
}
}
@AfterEach
void tearDown() {
if (jedisCluster != null) {
jedisCluster.close();
}
}
}
2.2.2 Spring集群环境下批处理代码
@Test
void testMSetInCluster() {
Map<String, String> map = new HashMap<>(3);
map.put("name", "Rose");
map.put("age", "21");
map.put("sex", "Female");
stringRedisTemplate.opsForValue().multiSet(map);
List<String> strings = stringRedisTemplate.opsForValue().multiGet(Arrays.asList("name", "age", "sex"));
strings.forEach(System.out::println);
}
原理分析
在RedisAdvancedClusterAsyncCommandsImpl 类中
首先根据slotHash算出来一个partitioned的map,map中的key就是slot,而他的value就是对应的对应相同slot的key对应的数据
通过 RedisFuture<String> mset = super.mset(op);
进行异步的消息发送
@Override
public RedisFuture<String> mset(Map<K, V> map) {
Map<Integer, List<K>> partitioned = SlotHash.partition(codec, map.keySet());
if (partitioned.size() < 2) {
return super.mset(map);
}
Map<Integer, RedisFuture<String>> executions = new HashMap<>();
for (Map.Entry<Integer, List<K>> entry : partitioned.entrySet()) {
Map<K, V> op = new HashMap<>();
entry.getValue().forEach(k -> op.put(k, map.get(k)));
RedisFuture<String> mset = super.mset(op);
executions.put(entry.getKey(), mset);
}
return MultiNodeExecution.firstOfAsync(executions);
}
3、服务器端优化-持久化配置
Redis的持久化虽然可以保证数据安全,但也会带来很多额外的开销,因此持久化请遵循下列建议:
- 用来做缓存的Redis实例尽量不要开启持久化功能
- 建议关闭RDB持久化功能,使用AOF持久化
- 利用脚本定期在slave节点做RDB,实现数据备份
- 设置合理的rewrite阈值,避免频繁的bgrewrite
- 配置no-appendfsync-on-rewrite = yes,禁止在rewrite期间做aof,避免因AOF引起的阻塞
- 部署有关建议:
- Redis实例的物理机要预留足够内存,应对fork和rewrite
- 单个Redis实例内存上限不要太大,例如4G或8G。可以加快fork的速度、减少主从同步、数据迁移压力
- 不要与CPU密集型应用部署在一起
- 不要与高硬盘负载应用一起部署。例如:数据库、消息队列
4、服务器端优化-慢查询优化
4.1 什么是慢查询
并不是很慢的查询才是慢查询,而是:在Redis执行时耗时超过某个阈值的命令,称为慢查询。
慢查询的危害:由于Redis是单线程的,所以当客户端发出指令后,他们都会进入到redis底层的queue来执行,如果此时有一些慢查询的数据,就会导致大量请求阻塞,从而引起报错,所以我们需要解决慢查询问题。
慢查询的阈值可以通过配置指定:
slowlog-log-slower-than:慢查询阈值,单位是微秒。默认是10000,建议1000
慢查询会被放入慢查询日志中,日志的长度有上限,可以通过配置指定:
slowlog-max-len:慢查询日志(本质是一个队列)的长度。默认是128,建议1000
修改这两个配置可以使用:config set命令:
4.2 如何查看慢查询
知道了以上内容之后,那么咱们如何去查看慢查询日志列表呢:
- slowlog len:查询慢查询日志长度
- slowlog get [n]:读取n条慢查询日志
- slowlog reset:清空慢查询列表
5、服务器端优化-命令及安全配置
安全可以说是服务器端一个非常重要的话题,如果安全出现了问题,那么一旦这个漏洞被一些坏人知道了之后,并且进行攻击,那么这就会给咱们的系统带来很多的损失,所以我们这节课就来解决这个问题。
Redis会绑定在0.0.0.0:6379,这样将会将Redis服务暴露到公网上,而Redis如果没有做身份认证,会出现严重的安全漏洞. 漏洞重现方式:https://cloud.tencent.com/developer/article/1039000
为什么会出现不需要密码也能够登录呢,主要是Redis考虑到每次登录都比较麻烦,所以Redis就有一种ssh免秘钥登录的方式,生成一对公钥和私钥,私钥放在本地,公钥放在redis端,当我们登录时服务器,再登录时候,他会去解析公钥和私钥,如果没有问题,则不需要利用redis的登录也能访问,这种做法本身也很常见,但是这里有一个前提,前提就是公钥必须保存在服务器上,才行,但是Redis的漏洞在于在不登录的情况下,也能把秘钥送到Linux服务器,从而产生漏洞
漏洞出现的核心的原因有以下几点:
- Redis未设置密码
- 利用了Redis的config set命令动态修改Redis配置
- 使用了Root账号权限启动Redis
所以:如何解决呢?我们可以采用如下几种方案
为了避免这样的漏洞,这里给出一些建议:
- Redis一定要设置密码
- 禁止线上使用下面命令:keys、flushall、flushdb、config set等命令。可以利用rename-command禁用。
- bind:限制网卡,禁止外网网卡访问
- 开启防火墙
- 不要使用Root账户启动Redis
- 尽量不是有默认的端口
6、服务器端优化-Redis内存划分和内存配置
当Redis内存不足时,可能导致Key频繁被删除、响应时间变长、QPS不稳定等问题。当内存使用率达到90%以上时就需要我们警惕,并快速定位到内存占用的原因。
有关碎片问题分析
Redis底层分配并不是这个key有多大,他就会分配多大,而是有他自己的分配策略,比如8,16,20等等,假定当前key只需要10个字节,此时分配8肯定不够,那么他就会分配16个字节,多出来的6个字节就不能被使用,这就是我们常说的 碎片问题
进程内存问题分析:
这片内存,通常我们都可以忽略不计
缓冲区内存问题分析:
一般包括客户端缓冲区、AOF缓冲区、复制缓冲区等。客户端缓冲区又包括输入缓冲区和输出缓冲区两种。这部分内存占用波动较大,所以这片内存也是我们需要重点分析的内存问题。
内存占用 | 说明 |
---|---|
数据内存 | 是Redis最主要的部分,存储Redis的键值信息。主要问题是BigKey问题、内存碎片问题 |
进程内存 | Redis主进程本身运⾏肯定需要占⽤内存,如代码、常量池等等;这部分内存⼤约⼏兆,在⼤多数⽣产环境中与Redis数据占⽤的内存相⽐可以忽略。 |
缓冲区内存 | 一般包括客户端缓冲区、AOF缓冲区、复制缓冲区等。客户端缓冲区又包括输入缓冲区和输出缓冲区两种。这部分内存占用波动较大,不当使用BigKey,可能导致内存溢出。 |
于是我们就需要通过一些命令,可以查看到Redis目前的内存分配状态:
- info memory:查看内存分配的情况
- memory xxx:查看key的主要占用情况
接下来我们看到了这些配置,最关键的缓存区内存如何定位和解决呢?
内存缓冲区常见的有三种:
- 复制缓冲区:主从复制的repl_backlog_buf,如果太小可能导致频繁的全量复制,影响性能。通过replbacklog-size来设置,默认1mb
- AOF缓冲区:AOF刷盘之前的缓存区域,AOF执行rewrite的缓冲区。无法设置容量上限
- 客户端缓冲区:分为输入缓冲区和输出缓冲区,输入缓冲区最大1G且不能设置。输出缓冲区可以设置
以上复制缓冲区和AOF缓冲区 不会有问题,最关键就是客户端缓冲区的问题
客户端缓冲区:指的就是我们发送命令时,客户端用来缓存命令的一个缓冲区,也就是我们向redis输入数据的输入端缓冲区和redis向客户端返回数据的响应缓存区,输入缓冲区最大1G且不能设置,所以这一块我们根本不用担心,如果超过了这个空间,redis会直接断开,因为本来此时此刻就代表着redis处理不过来了,我们需要担心的就是输出端缓冲区
我们在使用redis过程中,处理大量的big value,那么会导致我们的输出结果过多,如果输出缓存区过大,会导致redis直接断开,而默认配置的情况下, 其实他是没有大小的,这就比较坑了,内存可能一下子被占满,会直接导致咱们的redis断开,所以解决方案有两个
1、设置一个大小
2、增加我们带宽的大小,避免我们出现大量数据从而直接超过了redis的承受能力
7、服务器端集群优化-集群还是主从
集群虽然具备高可用特性,能实现自动故障恢复,但是如果使用不当,也会存在一些问题:
- 集群完整性问题
- 集群带宽问题
- 数据倾斜问题
- 客户端性能问题
- 命令的集群兼容性问题
- lua和事务问题
问题1、在Redis的默认配置中,如果发现任意一个插槽不可用,则整个集群都会停止对外服务:
大家可以设想一下,如果有几个slot不能使用,那么此时整个集群都不能用了,我们在开发中,其实最重要的是可用性,所以需要把如下配置修改成no,即有slot不能使用时,我们的redis集群还是可以对外提供服务
问题2、集群带宽问题
集群节点之间会不断的互相Ping来确定集群中其它节点的状态。每次Ping携带的信息至少包括:
- 插槽信息
- 集群状态信息
集群中节点越多,集群状态信息数据量也越大,10个节点的相关信息可能达到1kb,此时每次集群互通需要的带宽会非常高,这样会导致集群中大量的带宽都会被ping信息所占用,这是一个非常可怕的问题,所以我们需要去解决这样的问题
解决途径:
- 避免大集群,集群节点数不要太多,最好少于1000,如果业务庞大,则建立多个集群。
- 避免在单个物理机中运行太多Redis实例
- 配置合适的cluster-node-timeout值
问题3、命令的集群兼容性问题
有关这个问题咱们已经探讨过了,当我们使用批处理的命令时,redis要求我们的key必须落在相同的slot上,然后大量的key同时操作时,是无法完成的,所以客户端必须要对这样的数据进行处理,这些方案我们之前已经探讨过了,所以不再这个地方赘述了。
问题4、lua和事务的问题
lua和事务都是要保证原子性问题,如果你的key不在一个节点,那么是无法保证lua的执行和事务的特性的,所以在集群模式是没有办法执行lua和事务的
那我们到底是集群还是主从
单体Redis(主从Redis)已经能达到万级别的QPS,并且也具备很强的高可用特性。如果主从能满足业务需求的情况下,所以如果不是在万不得已的情况下,尽量不搭建Redis集群